

education

Department: Education North West Provincial Government REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT

GRADE 11

TECHNICAL MATHEMATICS P2 JUNE 2024

MARKS: 100

TIME: 2 hours

This question paper consist of 8 pages, including information sheet and a diagram sheet.

Copyright reserved

Please turnover

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. Answer ALL the questions.
- 2. Write ALL the answers in your answer book.
- 3. Start the answers to EACH question at the top of a NEW page.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and nongraphical, unless stated otherwise.
- If necessary, round off answers to TWO decimal places, unless stated otherwise.
 Diagrams are NOT necessarily drawn to scale.
- 9. An information sheet with formulae is included at the end of the question paper.
- 10. Write neatly and legibly.

QUESTION 1

The diagram below has vertices A(-2; -4), B(3; 6) and C(5; -2).

QUESTION 2

- point A(2; 3), B(-1; -1) and C(-2; *p*). 2.1 Given:
 - 2.1.1 If A,B, and C are collinear, calculate the value of *p*. (3)
 - 2.1.2 Calculate the value of p if AB is perpendicular to BC. (3)
- 2.2 The diagram below has vertices A(-4;3), B(0;3), C(2;-4) and D(-2;-6).

Prove that ABCD is not a square.

(6) [12]

QUESTION 3

Given: $f(x) = 2\sin x$ and $g(x) = \cos x + 1$ for $x \in [0^{\circ}; 360^{\circ}]$

3.1	Use the diagram sheet provided to sketch the graphs of f and g on the same set of axes.	(5)
3.2	Write down the period of f and g .	(2)
3.3	What is the amplitude of f .	(1)
3.4	Write down the range of g .	(2)
3.5	For which values of x is $f(x)$. $g(x) \le 0$.	(2) [12]

Copyright reserved

Please turnover

QUESTION 4

- 4.1 Complete the following statements below by filling in the missing words so that the statement is correct
 - 4.1.1 The opposite angels of a cyclic quadrilateral are ... (1)
 - 4.1.2 The angles subtended by a chord at the center of a circle is ... (1)
- 4.2 In the diagram below, RSDE are points on the circumference of a circle such that

$$\widehat{\mathbf{R}} = 4x, \widehat{\mathbf{S}} = y, \widehat{\mathbf{D}} = 3x - 20^{\circ} \text{ and } \widehat{\mathbf{E}} = 4y + 5^{\circ},$$

Calculate with reasons the measure of:

- 4.2.3 \hat{D}_1 (2)

QUESTION 5

In the diagram below O is the center of the circle,

CAT and DBT are tangents to the circle at point A and B respectively,

E is a point on the circumference of the circle and $\widehat{B}_1 = 35^{\circ}$.

Calculate the size of the following angles with reasons:

5.1	$O\widehat{B}T$ and $O\widehat{A}T$	(3)
5.2	\widehat{B}_2	(2)
5.3	\widehat{A}_1	(2)
5.4	$\widehat{0}_1$	(4)
5.5	Ê	(2) [13]

QUESTION 6

In the diagram below O is the center of the circle with ABDE as points on the circumference,

AOCD is a diameter to the circle.

OC = 2CD and BE = 30 cm.

Calculate with reasons:

6.6	Radius of circle OCD	(2) [13]
6.5	the value of k if $AB = 20$ cm	(4)
6.4	Hence calculate OB	(2)
6.3	If $CD = K$ units, determine OC in terms of K	(2)
6.2	BĈA	(2)
6.1	BC	(1)

QUESTION 7

	TOTAL:	100										
		[12]										
	$17\pi - \frac{3}{4}\pi - 135^{\circ}$	(2)										
7.3	Simplify, (answer must be in degrees).											
7.2	What is the measure in degrees of central angle θ that intersect an arc length of 20 cm on a circle with radius of 8 cm?	(4)										
	7.1.2 70°44′90″ to degrees	(3)										
	7.1.1 102,635° to degrees-minute-second.	(3)										
7.1	Convert the following:											

INFORMATION SHEET: TECHNICAL MATHEMATICS

Grade 11

$$\begin{aligned} x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & x = -\frac{b}{2a} & y = \frac{4ac - b^2}{4a} \\ a^x &= b \Leftrightarrow x = \log_a b, \ a > 0, \ a \neq 1 \ \text{and} \ b > 0 \\ A &= P(1+ni) & A = P(1-ni) & A = P(1+i)^n & A = P(1-i)^n \\ i_{aff} &= \left(1 + \frac{i}{m}\right)^m - 1 \\ f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \int kx^n dx &= \frac{kn^{n+1}}{n+1} + C \quad n, k \in \mathbb{R} \text{ with } n \neq -1 \text{ and } k \neq 0 \\ \int \frac{k}{x} dx &= k \ln x + C \quad , x > 0 \text{ and } k \in \mathbb{R}, k \neq 0 \\ \int ka^{as} dx &= \frac{ka^{as}}{n \ln a} + C \quad , a > 0, a \neq 1 \text{ and } k, a \in \mathbb{R}; k \neq 0 \\ d &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} & M\left(\frac{x_2 + x_1}{2}; \frac{y_2 + y_1}{2}\right) & \tan \theta = m \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \\ \text{In } \Delta ABC: \ \frac{a}{\sin A} &= \frac{b}{\sin B} = \frac{c}{\sin C} & a^2 = b^2 + c^2 - 2bc \cdot \cos A \\ \text{Area of } \Delta ABC = \frac{1}{2}ab \cdot \sin C \\ \sin^2 \theta + \cos^2 \theta = 1 & 1 + \tan^2 \theta = \sec^2 \theta & 1 + \cot^2 \theta = \csc^2 \theta \end{aligned}$$

 $\pi rad = 180^{\circ}$

Angular velocity = $w = 2\pi n$ where n = rotation frequencyAngular velocity = 360° where n = rotation frequency

Circumferential velocity
$$= v = \pi D n$$

Area of a sector $=\frac{rs}{2}$ Area of a sector $=\frac{r^2\theta}{2}$ where D = diameter and n = rotation frequency

where r = radius, and s = arc length

where r = radius, and $\theta = central angle$

in radians

where h = height of segment, d = diameter of

 $4h^2 - 4dh + x^2 = 0$ circle and x = length of chord

 $A_T = a(m_1 + m_2 + m_3 + \dots + m_n)$

$$A_T = a \left(\frac{o_1 + o_n}{2} + o_2 + o_3 + \dots + o_{n-1} \right)$$

where a = equal parts, $o_i = i^{th}$ ordinate

and n = number of ordinate

where
$$a = \text{equal parts}$$
, $m_1 = \frac{o_1 + o_2}{2}$, $o_i = i^{th}$ ordinate

and n = number of ordinate

DIAGRAM SHEET 1

QUESTION 3.1

NAME_____

	у																		
R																			
5																			
2																			
1																			
																	r		
0	45°	9	0°	13	5°	18	80°	22	25°	27	'0°	31	5°	36	0°	-	x		
-1	45°	9	0°	13	5°	18	30°	22	25°	27	'0°	31	.5°	36	0°		x		
-1	45°	9	0°	13	5°	18	30°	22	25°	27	.0°	31	.5°	36	0°		<i>x</i>		
-1	45°	9	0°	13	5°	18	30°	22	25°	27	0°	31	.5°	36	0°		<i>x</i>		
	45°	9	0°	13	5°	18	30°	22	25°	27	'0°	31	.5°	36	0°		<i>x</i>		
	45°	9	0°	13	5°	18	30°	22	25°	27	0°	31	5°	36	0°		<i>x</i>		
-1 -2 -3	45°	9	0°	13	5°	18	30°	22	25°	27	0°	31	.5°	36	0°		<i>x</i>		
-1 -2 -3	45°	9	0°	13	5°	18	30°	22	25°	27	0°	31	.5°	36	0°				
1 2 3	45°	9	0°	13	5°	18	30°	22	25°	27	.0°	31	5°	36	0°		x		