

education

Department: Education North West Provincial Government REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT

GRADE 11

MARKS: 150

These marking guidelines consist of 8 pages.

Copyright reserved

Please turn over

PRINCIPLES RELATED TO MARKING LIFE SCIENCES

- 1. **If more information than marks allocated is given** Stop marking when maximum marks are reached and put a wavy line and 'max' in the right-hand margin.
- 2. **If, for example, three reasons are required and five are given** Mark the first three irrespective of whether all or some are correct/incorrect.
- 3. **If the whole process is given when only part of it is required** Read all and credit relevant parts.
- 4. **If comparisons are asked for and descriptions are given** Accept if differences/similarities are clear.
- 5. **If tabulation is required but paragraphs are given** Candidates will lose marks for not tabulating.
- 6. **If diagrams are given with annotations when descriptions are required** Candidates will lose marks.
- 7. **If flow charts are given instead of descriptions** Candidates will lose marks.
- 8. If the sequence is muddled and links do not make sense Where sequence and links are correct, credit. Where sequence and links are incorrect, do not credit. If the sequence and links become correct again, resume credit.
- 9. **Non-recognised abbreviations** Accept if first defined in the answer. If not defined, do not credit the unrecognized abbreviation but credit the rest of the answer if correct.

10. Wrong numbering

If the answer fits into the correct sequence of questions but the wrong number is given, it is acceptable.

11. If the language used changes the intended meaning Do not accept.

12. **Spelling errors**

If recognizable accept provided it does not mean something else in Life Sciences or if it is out of context.

- 13. **If common names are given in terminology** Accept provided it was accepted at the Provincial memo discussion meeting.
- 14. If units are not given in measurements Candidates will lose marks. Memorandum will allocate marks for units separately

15. Be sensitive to the sense of an answer, which may be stated in a different way.

16. Caption

All illustrations (diagrams, graphs, tables, etc.) must have a caption

17. Code-switching of official languages (terms and concepts)

A single word or two that appears in any official language other than the learners' assessment language used to the greatest extent in his/her answers should be credited if it is correct. A marker that is proficient in the relevant official language should be consulted. This applies to all official languages.

18. No changes must be made to the marking memoranda without consulting the Provincial Internal Moderator who in turn will consult with the Provincial Internal Moderator.

SECTION A

QUESTION 1

1.1	1.1.1 1.1.2		B√√ C√√	(2) (2)
	1.1.3		B√√	(2)
	1.1.4		$D\sqrt{}$	(2)
	1.1.5			(2)
	1.1.6		$C_{\sqrt{2}}$	(2)
	1.1.7			(2)
	1.1.8		$C_{1}/\sqrt{2}$	(2)
	1.1.9			(2)
1.2	1.2.1 (Capsid $\sqrt{/Protein capsule}$	(1)
	1.2.2		$X_{\rm vlem}/y_{\rm vascular tissue}$	(1)
	1.2.3			(1)
	1.2.4			(1)
	1.2.5		(B) Lymphocytes / NOT T-lymphocytes	(1)
	1.2.6		Electro transport chain $1/2$ ovidative phosphorylation	(1)
	1.2.7		Photolysis./	(1)
	1.2.8			(1)
	1.2.9		Gametophyte√	(')
1.3	1.3.1		NONE $\checkmark \checkmark$ (Glycolysis occurs in cytoplasm)	(2)
	1.3.2		Both A and $B\sqrt{}$	(2)
	1.3.3		B only√√	(2)
1.4	1.4.1		a) F√/Fern	(1)
			b) D√/Club Mosses	(1)
	1.4.2		ferns have vascular tissue / true leaves, while mosses lack these features√ (MUST GIVE THE COMPARISON FOR ONE MARK)	(1)
	1.4.3		Bryophytes√/liverwort/moss/hornwort	(1)
	1.4.4		adaptations for high humidity $$ consistent rainfall (Any 1)	(1)
	1.4.5		 by providing a more efficient way to transport water and nutrients	
			- compete more effectively for resources√	
			- in drv environments√	(2)
1.5	1.5.1	(a)	Anus√	(1)
		(b)	Large intestine√/ descending colon	(1)
	1.5.2	(a)	H√	(1)
		(b)	E√	(1)
	1.5.3	(a)	A √– STOMACH√	(2)
		(b)	I√– GALBLADDER √	(-)
	1.5.4	(a)	- EXOCRINE GLAND √/release enzymes	(2)
			- ENDOCRINE GLAND√/release hormones (Any 1)	(1)
		(b)	egestion√/water absorption/Vitamin K production	(1) [50]

SECTION B

QUESTION 2

2.1	2.1.1	Fungi√	(1)
	2.1.2	a) sporangiophore√	(1)
		b) hyphae√/ stolon	(1)
	2.1.3	Mycorrhiza is:	()
		 a symbiotic association√ 	
		 between fungi and plant roots√ 	
		- The fungi help in nutrient/ water absorption $$ for the plants	
		 the plant provides the fungi with organic compounds	(4)
	2.1.4	 acting as a network of hyphae√ / its extensive branching structure 	()
		- responsible for nutrient absorption \checkmark / maximizes the surface	
		area for nutrient uptake√	(2)
	2.1.5	Within the sporangium	(-)
		 numerous spores develop√ 	
		- through mitosis√	
		 it eventually bursts √/release the spores into the environment 	
		 spores can then germinate √/develop into new fungal individuals. (Any 3) 	(3)
22	221	a) Anthon ((4)
2.2	2.2.1	a) Antherv	(1)
	222	b) Fertilisation	(1)
	2.2.2	- the transfer of polien $$	
		- from the anther of a flower on one plant $$	
		- to the sugma of a nower on another plant \checkmark	
	222	- of the same species. \checkmark	(4)
	2.2.3	- Presence of Nectary/sugary reward	
		- attracts insects // encourages repeated visits by pollinators.	
		- Bright Colours / Patterns	
		- auract the alternion of insects√ / aids in the recognition of the flower/facilitate pollination	
		- Large petals./	
		- Form a landing platform for insects visiting the plant $\sqrt{(Any 2x 2)}$	(1)
		MARK FIRST TWO ONLY	(-)
2.3	2.3.1	A - ectoderm√	(1)
		D - endoderm√	(1)
	2.3.2	B√	(1)
	2.3.3	Flatworms√	(1)

2.3.4	 pollinators√ decomposers√ 	
	 contributors to nutrient cycling√ 	
	 serve as a food source√ for various animals 	
	- contribute to biodiversity \checkmark	
	MARK FIRST THREE ONLY	(3)
2.3.5	 Efficient Nutrient Absorption: √ 	
	- specialized regions for digestion and absorption \checkmark	
	- Continuous Feeding√	
	- allowing them to extract nutrients from food as it passes through	
	different digestive compartments. √	
	MARK FIRST TWO ONLY	(4)
2.4.1	An herbivore is an animal that primarily consumes plant material \checkmark	
	as its main source of nutrition.	(1)
2.4.2	Herbivores have flat molars√ for grinding√ plant material	
	Carnivores have sharp molars for shearing	
	OR	
	Germiveres pointed earlines (for tearing fleeb (
	Carrivores pointed canines viol tearing tiesh v	(Λ)
2.4.3	- a reduction in tooth wear \checkmark	(-)
	- a decrease in the size of chewing surfaces \checkmark	
	- a reduction in the development of jaw muscles due to decreased	
	chewing effort√	
	 canines may reduce in size/length√ 	(4)
2.4.4	 less energy would be required/ expended for chewing√/ 	
	mastication	
	 allowing for more efficient digestion√ 	(2)
2.4.5	- mitochondria√	
	 cristae√/folded inner membranes 	
	- a fluid-filled matrix√	(3)
2.4.6	inner membrane /cristae	
	 Increase/provide a large surface area√ for reactions 	
	 optimizing ATP synthesis ✓ /provides ample space for 	
	electron transport chain proteins / facilitates ATP production	
	The fluid-filled matrix	
	 contains ribosomes that produce specific enzymes for the 	
	Krebs cycle //supports the tricarboxvlic acid (TCA) cycle /	
	causing the efficient breakdown of glucose (Any 1)	(3)
		[50]

Life S	Sciences
--------	----------

7 Grade 11 – Marking Guidelines

QUESTION 3

3.1	3.1.1	hydrodynamic efficiency \checkmark of the aquatic organisms	(1)
	3.1.2	- Control√	
		 to compare a non-fusiform to a fusiform√ 	(2)
	3.1.3	 Using the same water tunnel√ 	
		 Using the same flow rates√ 	
		MARK FIRST TWO ONLY	(2)
	3.1.4	Conducting five trials√ for each type of fish	
	o 4 =		(2)
	3.1.5	Decide on	
		- WHO - the scientists/ish specialists/ichthyologists are going to be - WHAT- Species Selection: Choose representative species with	
		distinct body plans	
		- WHEN – The optimum season for the fish	
		 WHERE – the laboratory setting/ tank to be used 	
		 HOW – working protocol and measurements/ apparatus used 	
		(any reasonable interpretation of planning)	$\langle \mathbf{O} \rangle$
	216	MARK FIRST THREE ONLY	(3)
	3.1.0	- I o ensure natural/consistent benaviour in fisn√	$\langle \mathbf{O} \rangle$
	217	- to reduce stress √	(2)
	3.1.7	- It enhances their survivaly in their specific habitat	
		- camouflaging / itself in the sand /serves as a form of natural	
		OR	
		- improved depth perception √in the flatfish's horizontal orientation	
		- aiding in effective hunting $\sqrt{2}$ / capturing prev (Anv 1 x 2)	(2)
3.2	3.2.1	a) lodine solution $$	(1)
		b) Alcohol√/ ethanol (NOT Methanol)	(1)
	3.2.2	a) Part F $\sqrt{\text{green part of leaf open to light}}$	(1)
		b) Part E $$ white part of leaf open to light	(-)
		Part $H_{}$ white part of leaf covered with cardboard	
		Part \mathbf{G} green part of leaf covered with cardboard	(3)
	3.2.3	$C - B - D - A \sqrt{}$	(2)
	3.2.4	- Solution B (alcohol) was used to remove chlorophyll \checkmark	
		- Alcohol breaks down cell membranes $$ and extracts pigments	(2)
	3.2.5	- To Compare√	()
		- the effect of presence and absence of chlorophyll/ Green part with	
		chlorophyll and White parts with no chlorophyll√	
		- To isolate the effect of light (independent variable) \checkmark	(2)
	3.2.6	Increase in Light Intensity	
		 Leads to higher rate of photosynthesis√ 	
		 Saturation of photosynthetic pigments	
		- cause the rate of photosynthesis to plateaus \checkmark as all available	
		chlorophyll molecules are already engaged in light absorption.	
		(Any2)	(2)

Life Sciences		8 NW Grade 11 – Marking Guidelines		NW/June 2	/June 2023	
2.2	0.0.4		<i>"</i>			
3.3	3.3.1	the speed√/	frequency at which cells		(-)	
	0.0.0	extract ener	gy from the nutrients \sqrt{gluco}		(2)	
	3.3.2	performing t	ne same experimental setup	and conditions but without		
	0.0.0	the presence	e of living larvae√		(1)	
	3.3.3	Absorbs car	bon dioxide √		(1)	
	3.3.4	3.3.4 is related to the metabolic activity of the larvae \checkmark				
		because it indicates the production of carbon dioxide \checkmark by larvae				
		providing a measure of the larvae's respiration rate \checkmark				
	3.3.5	Characteristic	Photosynthesis	Aerobic Respiration		
		Location in Cells	Chloroplasts/ (mainly in plant cells)	Mitochondria/ (found in both plant and animal cells)		
		Purpose	Conversion of light energy into chemical energy	Harvesting chemical energy from organic molecules		
		Reactants	Carbon dioxide, water, and	Oxygen and organic		
		Products	Glucose and oxygen	Carbon dioxide water and		
				energy (ATP)		
		Energy Input/Output	Requires light energy as an input	Releases energy (ATP) during the process		
		Processes Involved	Light-dependent reactions and Calvin cycle	Glycolysis, Krebs cycle, and Electron Transport Chain		
		Byproducts	Oxygen is released as a byproduct	Water and carbon dioxide are released as byproducts		
		Occurs in	Autotrophs (plants and some bacteria)	All living cells, both autotrophs and beterotrophs		
	3.3.6		Tabulate x	1 (MARK FIRST TWO ONLY)	(5)	
	01010	For ATP production $$				
		during periods of high energy demand $$ low oxygen				
		preventing m	uscle fatique√	(Any 3)	(3)	
		prereinigin		(*	(0)	
3.4	3.4.1	Fermentation	is:			
		- a metabolic process√				
		 in which microorganisms√ / bacteria / yeast 				
		 convert organic compounds/carbohydrates√ 				
		- into simpl	er compounds√ /alcohol/lactic	acid	(2)	
	3.4.2	- alcohol	1		(2)	
	3.4.3	- to change	the nature of food products fo	r centuries	(2)	
		 by changing the flavour√ /texture /using it to preserve food (prevent 				
		spoilage)	for longer√/changing the nutrit	tional value	(2)	
	3.4.4	- Biogas/Bi	ofuel		()	
		- Vinegar				
		- Biopolym	ers/bioplastic			
					(2)	
					(<u>~</u>) [50]	
				TOTAL SECTION B	100	
				GRAND TOTAL	150	