

education

Department: Education North West Provincial Government REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT

GRADE 12

MATHEMATICS P2 JUNE 2024

MARKS: 150

TIME: 3 hours

This question paper consists of 11 pages, 1 information sheet and an answer book of 21 pages.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 9 questions.
- 2. Answer ALL the questions.
- 3. Write ALL the answers in the ANSWER BOOK provided.
- 4. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining the answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and nongraphical), unless stated otherwise.
- 7. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Number the answers correctly according to the numbering system used in this question paper.
- 10. An information sheet with formulae is included at the end of the question paper.
- 11. Write neatly and legibly.

QUESTION 1

In the figure below, A (-2; -6), B(3; 6), C(9; 5) and D are joined to from a kite.

1.1	Calculate the length of AC and give your answer in simplest surd form.	(2)
1.2	Calculate the gradient of AC.	(2)
1.3	Determine the equation of AC.	(2)
1.4	Give a reason why $AE \perp BD$.	(1)
1.5	Determine the equation of BD.	(3)
1.6	Determine the coordinates of E.	(3)
1.7	Determine, with reasons, the coordinates of D.	(3)
1.8	Calculate the size of ADC.	(5) [21]

QUESTION 2

In the diagram, the circle is centred at M (2; 2). Radius KM is produced to L, a point outside the circle, such that KML $\parallel y$ -axis. LTP is a tangent to the circle at T (-2; *b*). S(-6; -4) is the midpoint of PK.

 $2.2.1 \quad \text{The coordinates of K.} \tag{2}$

2.2.2 The equation of the tangent LTP in the form y = mx + c. (4)

- 2.2.3 The area of Δ LPK.
- ^{2.3} Another circle with equation $(x-2)^2 + (y-n)^2 = 25$ is drawn. Determine, with an explanation, the value(s) of *n* for which the two circles will touch each other externally.

(4) [**21**]

(7)

(3)

[23]

QUESTION 3

3.1 Simplify the expression below to a single trigonometric ratio:

$$\frac{\cos(90^{\circ} + x).\sin(540^{\circ} + x)}{\tan(x - 180^{\circ}).\cos(-x)}$$
(6)

- 3.2 Given $\cos(P+Q) = \cos P \cdot \cos Q - \sin P \cdot \sin Q$ (4) Use the above identity and express cos 2P in terms of cos P.
- If $\tan A = \frac{4}{3}$, where $A \in [90^\circ; 360^\circ]$ 3.3 Use a sketch to determine the following: 3.3.1 sin A

3.3.2
$$\cos(A + 30^{\circ})$$
 (4)

- 3.4 Given: $\cos 12^\circ = p$. With the aid of the diagram, determine the following without using a calculator, in terms of *p*.
 - 3.4.1 sin 78° (2)

$$3.4.2 \quad \sin 6^{\circ}$$
 (4)

QUESTION 4

4.1	Prove that:	$\frac{\sin 2x - \cos 2x + 1}{\sin 2x + \cos 2x + 1} = \tan x$	(7)
-----	-------------	--	-----

- 4.2 Hence, or otherwise, determine the value of $\tan 22.5^\circ$, without using the calculator. (Leave your answer in SURD form). (3)
- 4.3 Determine the general solution of the equation: $3\cos 2x = 1 + 5\cos x$ (7)[17]

QUESTION 5

The sketch below, shows the graphs of $f(x) = a \sin x$ and $g(x) = \sin x + b$, for $x \in [-360^{\circ}; 360^{\circ}]$.

Use the given graphs to answer the following questions:

	5.3.3	g decreases as x is increases.	(2) [10]
	5.3.2	f'(x).g(x) > 0.	(3)
	5.3.1	f(x) = g(x) .	(2)
5.3	Determine the value(s) of x, where $x \in [-360^{\circ}; 360^{\circ}]$, for which:		(1)
5.2	What is the amplitude of g ?		(1)
5.1	Write d	lown the values of a and b.	(2)

QUESTION 6

In the diagram below, a pole LY is placed at the corner of a triangular field XYZ. The area of the field is A m^2 . $X\hat{Y}Z = 2\theta$, $Y\hat{Z}L = \theta$ and XY = p metres. LY = h metres and YZ = r metres and XZ = t metres

- 6.1 Determine, A, the area of ΔXYZ in terms of r, p and θ . (1)
- 6.2 Express *r* in terms of A, *p* and θ . (2)
- 6.3 Hence, show that the height of the pole, *h*, is given by:

$$h = \frac{A}{p\cos^2\theta}$$

6.4 If h = 20m, p = 10m and $\theta = 60^{\circ}$.

Determine:

(2)

6.4.2 The length of t correct to 2 decimal places (4) [14]

(5)

QUESTION 7

7.1 In the diagram below, O is the centre of the circle. P, Q, S and R, are points on the circumference of the circle.

PQ = QS and $\hat{PQS} = 130^{\circ}$.

Determine, giving reasons, the sizes of:

7.1.1	Ŝ	(3)
7.1.2	Ŕ	(2)

7.1.3 \hat{O}_1 (3)

7.2 In the diagram below, O is the centre of the circle. AB is perpendicular to diameter DC. CM: MD = 2:7 and AB = 14 units.

If CM = 2x:

7.2.1	Express DC in terms of <i>x</i> .	(1)
7.2.2	Express OM in terms of <i>x</i> .	(2)
7.2.3	Hence, or otherwise, calculate the length of the radius.	(5)

[16]

QUESTION 8

8.1 In the diagram below, Δ MNC is drawn. A is a point on MN and B is a point on MC such that AB || NC. AC and NC are drawn.

Use the diagram to prove the theorem which states that:

$$\frac{MA}{AN} = \frac{MB}{BC}$$
(7)

8.2 The figure below shows \triangle ABC with BC produced to D. RD is drawn with point T on AC and R on BA. CS is drawn. TC = 9 cm, AT = 27 cm, AR = 60 cm and AS = 80 cm.

8.2.1	Prove that SC RT	(3)
8.2.2	Determine the length of RS	(1)
8.2.3	If $AR : RB = 2 : 3$ and $BC = 30$ cm, calculate the length of CD.	(5) [16]

QUESTION 9

In the figure below, KL is a tangent to the circle. L, J and R are points on the circle and MN is parallel to KL.

Prove that:

9.1	JMRN is a cyclic quadrilateral.	(3)
9.2	$\Delta JNR \parallel \Delta LMK$	(3)
9.3	$\frac{\text{NL.JT}}{\text{TV}} = \frac{\text{LM.NR}}{\text{MK}}$	(6)

- [12]
- TOTAL: 150

INFORMATION SHEET: MATHEMATICS

$x = \frac{-b \pm \sqrt{b^2 - 4a}}{2a}$				
A = P(1+ni)	A = P(1 - ni)	$A = P(1-i)^n$	<i>A</i> =	$= P(1+i)^n$
$T_n = a + (n-1)d$	$\mathbf{S}_n = \frac{n}{2} \left(2a \right)$	+(n-1)d		
$T_n = ar^{n-1}$	$S_n = \frac{a(r^n)}{r-r}$	$\frac{-1}{1} ; r \neq 1$	$S_{\infty} = \frac{a}{1-r}$; –1 < <i>r</i> < 1
$F = \frac{x\left[\left(1+i\right)^n - 1\right]}{i}$	<i>P</i> =	$\frac{x[1-(1+i)^{-n}]}{i}$		
$f'(x) = \lim_{h \to 0} \frac{f(x+x)}{x}$	$\frac{(h) - f(x)}{h}$			
$d = \sqrt{(x_2 - x_1)^2} + $	$(y_2 - y_1)^2$	$M\bigg(\frac{x_1 + x_2}{2}; \frac{y_1 + x_2}{2} \big)$	$\left(\frac{y_2}{y_2}\right)$	
y = mx + c	$y - y_1 = m$	$m(x-x_1)$ m	$y = \frac{y_2 - y_1}{x_2 - x_1}$	$m = \tan \theta$
$(x-a)^2 + (y-b)^2$	$=r^{2}$		2 1	
In $\triangle ABC: \frac{a}{\sin A}$	$=\frac{b}{\sin B}=\frac{c}{\sin C}$	$a^2 = b^2 + c^2 - 2$	bc.cosA	
area $\triangle ABC = \frac{1}{2}aA$	b.sin C			
$\sin(\alpha+\beta)=\sin\alpha$	$\cos\beta + \cos\alpha \cdot \sin\beta$	$\beta \qquad \sin(\alpha - \beta)$	β) = sin α .cos β -	$-\cos\alpha.\sin\beta$
$\cos(\alpha+\beta)=\cos\alpha$	$\alpha .\cos\beta - \sin\alpha .\sin\beta$	$\beta \qquad \cos(\alpha - \beta)$	$\beta) = \cos \alpha . \cos \beta$	+ sin α .sin β
$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \frac{1}{2} \sin^2 \alpha \\ 2\cos^2 \alpha \end{cases}$	$-\sin^2 \alpha$ $\frac{2}{\alpha}\alpha$	$\sin 2\alpha = 2$	$2\sin\alpha.\cos\alpha$	
$\overline{x} = \frac{\sum fx}{n}$		$\sigma^2 = \frac{\sum_{i=1}^{n} ($	$\frac{\left(x_{i}-\overline{x}\right)^{2}}{n}$	
$P(\mathbf{A}) = \frac{n(\mathbf{A})}{n(\mathbf{S})}$		P(A or B)	= P(A) + P(B) -	P(A and B)

$$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

 $\hat{y} = a + bx$