

education

Department: Education North West Provincial Government REPUBLIC OF SOUTH AFRICA

_ _ _ _ _ _ _ _ _ _ _

PROVINCIAL ASSESSMENT

GRADE 11

PHYSICAL SCIENCES P2

JUNE 2024

MARKS: 50

10

I∎ I∎

1

10

TIME: 1 hour

This question paper consists of 6 pages and a data sheet.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

- 1. Write your name on the ANSWER BOOK provided.
- 2. This question paper consists of FOUR questions. Answer ALL questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two sub-questions, e.g between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You are advised to use the attached DATA SHEET<u>S</u>.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, etc. where required.
- 11. Write neatly and legibly.

QUESTION 1: MULTIPLE CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.3) in the ANSWER BOOK, e.g. 1.4 D.

- 1.1 Which ONE of the following molecules is a polar molecule?
 - A CH₄
 - B CO₂
 - C Cl₂
 - D HCI (2)
- 1.2 Bond length is the distance between ...
 - A the orbitals of two attached atoms.
 - B the nuclei of two attached atoms.
 - C the electrons in two attached atoms.
 - D the molecules of the same substance.
- 1.3 When NaCl dissolves in water, aqueous Na⁺ and Cl⁻ ions result. The force of attraction that exists between Na⁺ and H₂O is called $a(n) \dots$ interaction.
 - A dipole-dipole
 - B ion-ion
 - C hydrogen bonding
 - D ion-dipole

(2) [6]

(2)

QUESTION 2

Molecules such NH₃ and HCN are formed through covalent bonding.

2.1	Define the term covalent bond.							
2.2	Draw Le	ewis structures for the following:						
	2.2.1	NH ₃	(2)					
	2.2.2	HCN	(2)					
2.3	Define t	efine the term <i>electronegativity</i> .						
2.4	Use the difference in electronegativity to determine the covalent bond strength of the following:							
	2.4.1	H and N in NH_3	(2)					
	2.4.2	H and C in HCN	(2)					
2.5	How ma	w many lone pairs of electrons are in ONE molecule of NH ₃ ? (
2.6	What is the valency of Carbon in HCN molecule. (
2.7	Write down the molecular shape of :							
	2.7.1	NH ₃	(1)					
	2.7.2	HCN	(1)					
2.8	NH_4^+ is formed when NH_3 forms a bond with an H^+ ion.							
	2.8.1	What type of bond forms between a H^+ ion and NH_3 molecule?	(1)					
	2.8.2	Is NH_4^+ a POLAR or NON-POLAR molecule?						
		Explain your answer by referring to molecular shape and polarity of the bonds in the molecule.	(4) [22]					

QUESTION 3

The graph below shows the potential energy associated with <u>which</u> the formation of the bond between HF atoms and HCl atoms. The graphs are labelled \mathbf{A} and \mathbf{B} in <u>with</u> no particular order.

3.4.2	Bond energy of HCI	(1)
3.4.1	Bond length for graph HF	(1)

Grade 11

QUESTION 4

The vapour pressure versus temperature graph below was obtained for three different liquids.

- 4.3 Write down the physical state of HBr at 90 °C. (1)
- Use the graph above to write down the boiling point of the following 4.4 molecules:
 - 4.4.1 HBr (1)
 - 4.4.2 H₂O (1)
- 4.5 Explain the difference in the boiling points of HBr and H₂O in **QUESTION 4.4** by referring to the TYPE OF INTERMOLECULAR FORCES, STRENGTH OF THE INTERMOLECULAR FORCE AND ENERGY. (4)

[13]

(2)

(2)

4.1

4.2

Grade 11

NW/June 2024

THE PERIODIC TABLE OF ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
(I)	(II)			KEY								(III)	(IV)	(V)	(VI)	(VII)	(VIII)
1 – H ~1							Atomic 2	number 9									2 He 4
3 ₀Li ←7	4 98 9 7		Electronegativity> 🕤 Cu Symbol										6 C 12 7	7 ວN ຕົ14	8 ເ _ເ O ຕຳ16	9 9 7 19	10 Ne 20
11 م Na 0 23	12 ∾ Mg ← 24					Appro	ximate re	elative a		13 بن ^{Al} 727	14 ∞Si ⊷28	15 _– P ∾31	16 _{ມີ} S ຕີ32	17 ంCℓ ෆ35,5	18 Ar 40		
19 _∞ K ⊙ 39	20 ₀ Ca ᢏ 40	21 ლ Sc + 45	22 _{ی2} Ti ⊊48	23 س2 51	24 Cr 52	25 Mn ر 55	26 ∞Fe ⊷ 56	27 ∞Co ⊂ 59	28 ∞Ni √ 59	29 م2 ح63,5	30 Zn ⊷ 65	31 Ga ⊷ 70	32 ∞Ge ←73	33 ₀As ∾75	34 <mark>⊰</mark> Se ∾79	35 ∞Br ∾80	36 Kr 84
37 ∞ Rb ○ 86	38 ⊙ Sr 〒88	39 ∾ Y ← 89	40 ∢ Zr ∽91	41 Nb 92	42 ∞Mo ∽96	43 ൭Tc ᢏ	44 ∾Ru ∾101	45 ∾Rh ∾103	46 ∾Pd ∾106	47 ൭Ag Ლ108	48 ⊾Cd ∵112	49 ⊾In ∽115	50 ∞Sn ∽119	51 ໑Sb ∽122	52 ⊷Te ∾128	53 ام 127	54 Xe 131
55 Cs 133	56 Ba و 137	57 La 139	72 Hf 	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 ₹ 204	82 ₽b ₩207	83 Bi 50209	84 Po 5	85 At 5'2	86 Rn
87 Fr	88 Ra	89 Ac		58	50	60	61	62	63	64	65	66	67	68	69	70	71
0'1	o ²²⁶			Ce 140	99 Pr 141	Nd 144	Pm	Sm 150	Eu 152	Gd 157	Tb 159	Dy 163	Ho 165	Er 167	Tm 169	Yb 173	Lu 175
				90 Th 232	91 Pa	92 U 238	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Copyright reserved