

education

Department:
Education
North West Provincial Government
REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT

GRADE 11

PHYSICAL SCIENCES P2
JUNE 2024
MARKING GUIDELINES

These marking guidelines consist of 3 pages.

Copyright reserved Please turn over

QUESTION 1

1.1 D ✓ ✓

1.2 B ✓ ✓

1.3 D ✓ ✓

[6]

QUESTION 2

2.1 Covalent bond as the sharing of electrons between two atoms to form a molecule. ✓✓

(2)

2.2 2.2.1

2.2.2 $\mathbf{N} : \mathbf{C} = \mathbf{N} \checkmark \checkmark$ (2)

2.3 Electronegativity is a measure of the tendency of an atom in a molecule to (2) attract bonding electrons. ✓✓

OR

A measure of an atom's attractive force on bonding electrons to form a molecule. \checkmark \checkmark

2.4 2.4.1 $\Delta E = 3.0-2.1 = 0.9 \checkmark$, polar. \checkmark (2)

2.4.2
$$\Delta E = 2.5 - 2.1 = 0.4 \checkmark$$
, slightly polar/ weak polar. \checkmark (2)

2.5 1/ONE. ✓ (1)

2.6 4/FOUR ✓ (1)

2.7.1 Trigonal pyramidal ✓ (1)

2.7.2 Linear ✓ (1)

2.8.1 Covalent dative bond ✓ (1)

2.8.2 Non-polar ✓

• N – H is a polar bond \checkmark (\triangle EN = 3,0 – 2, = 1)

NH⁺₄ is a tetrahedral ✓

 Charge distribution /molecular geometry / molecule is symmetrical. ✓

[22]

Copyright reserved

Grade 11 – Making Guideline

QUESTION 3

3.1	Bond energy is the energy needed to break one mole of its molecules into separate atoms. $\checkmark\checkmark$		
3.2	The shorter the bond the stronger the bond \mathbf{OR} the longer the bond the weaker the bond. $\checkmark\checkmark$		(2)
3.3	A • • 	F has a smaller atomic size than Cl. ✓ The bond between H and F atoms is shorter than the bond between H and Cl atoms. ✓ The bond between H and F atoms is stronger than the bond between H and Cl atoms. ✓	(4)
3.4	92×10 ⁻¹² m ✓ (1)		
3.5	427 k·J·mol ⁻¹ ✓		(1) [10]
QUESTION 4			
4.1	The temperature at which the vapour pressure of a substance equals atmospheric pressure. ✓ ✓		
4.2	4.2.1	When the boiling point is low the vapour pressure will be higher. $\checkmark \checkmark$	(2)
	4.2.2	HBr ✓ It has the lowest vapour pressure. ✓	(2)
4.3	Gas ✓		(1)
4.4	4.4.1	80 °C ✓	(1)
	4.4.2	100 °C ✓	(1)
4.5	•	HBr has dipole-dipole forces, H ₂ O has hydrogen bonds. ✓ Hydrogen bonds are stronger than the dipole-dipole forces. ✓ More energy is needed to overcome the intermolecular forces in H ₂ O than in HBr. ✓ Thus H ₂ O will have a higher boiling point than HBr ✓	(4) [13]
		TOTAL:	50