

education

Department: Education North West Provincial Government REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT

GRADE 10

MARKS: 100

These marking guidelines consist of 7 pages.

Copyright reserved

Please turn over

QUESTION 1

1.8	C √√	(2) [16]
1.7	A✓✓	(2)
1.6	B√√	(2)
1.5	B√√	(2)
1.4	A✓✓	(2)
1.3	C √√	(2)
1.2	$D\checkmark\checkmark$	(2)
1.1	A✓✓	(2)

QUESTION 2 (Start on a new page.)

2.1	2.1.1	Resultant is defined as <u>a single vector</u> which has the <u>same</u>	
		effect as two or more vectors together/ combined.	(2)

2.1.2

2.2	2.2.1	The actual path length between two points. $\checkmark\checkmark$	(2)
	2.2.2	Total distance = $D_1 + D_2$	

$$= 300 + 400 \checkmark$$

= 700 m \lambda (1)

(2) **[9]**

QUESTION 3 (Start on n new page.)

3.1 3.1.1 The rate of change of displacement.
$$\checkmark \checkmark$$
 (2)

3.1.2 Time =
$$35 \times 60 = 2100 \text{ s} \checkmark$$

Displacement = $67 \times 1000 = 67\ 000\ \text{m} \checkmark$ (2)

3.1.3
$$\begin{array}{|c|c|c|}\hline \textbf{Option 1: take east as +} \\ v_{ave} = \frac{\Delta x}{\Delta t} & \checkmark \text{ (or formulae in words)} \\ &= \frac{67\ 000}{2\ 100} \checkmark \\ v_{ave} = 31,90\ \text{m}\cdot\text{s}^{-1},\ \text{East} \checkmark \end{array} \begin{array}{|c|}\hline \textbf{Option 2: take west as +} \\ v_{ave} = \frac{\Delta x}{\Delta t} & \checkmark \text{ (or formulae in words)} \\ &= \frac{-67\ 000}{2\ 100} \checkmark \\ v_{ave} = 31,90\ \text{m}\cdot\text{s}^{-1},\ \text{East} \checkmark \end{array}$$

3.2 3.2.1 The rate of change of velocity. ✓✓

Copyright reserved

(2)

QUESTION 4

4.2 F_N/N Note: Allocate mark for arrow and label. Penalise if: F/Fa F_f/F Force diagram (-1) • No arrow (-1) • • Gaps between the line and dot (-1) Additional force (-1) F_g/w (4) 4.3 w = m.g $F_g = m.g$ ANY ONE ✓ 1 176 = (m)(9,8) ✓ (3) m = 120 kg ✓ 4.4 Option 1: Left as + Option 2: Right as + $F_{res} = F_1 + F_2 \checkmark$ $F_{res} = F_1 + F_2 \checkmark$ = (+240) + (-40) ✓ = (-240) + (+40) ✓ F_{res} = + 100 N $F_{res} = -100 \text{ N}$ F_{res} = 100 N, left ✓ F_{res} = 100 N, left ✓ (3)

4.5 Polishing ✓

Lubriaction Change type of surface that make contact Wheel bearings Balls or wheels Shape Pull versus Push

ACCEPT ANY ONE (1)

[13]

5 Grade 10 – Marking Guidelines

QUESTION 5

5.1.1 Mechanical advantage is defined as ratio of the load to the 5.1 <u>effort.</u> √ √ (2)

5.1.2
$$MA = \frac{L}{E}$$
$$MA = \frac{load}{effort} \checkmark ANY ONE$$
$$= \frac{196}{200} \checkmark$$
$$MA = 0.98 \checkmark \text{ (no unit)}$$

$$MA = 0.98 \checkmark \text{ (no unit)} \tag{3}$$

5.2 5.2.1 Moment of force is defined as the turning effect of the force
about that point.
$$\checkmark\checkmark$$
 (2)

5.2.2
$$\tau = F \cdot r_{\perp} \checkmark$$

= (500) (3) \checkmark
= 1 500 N.m⁻¹ \checkmark clockwise \checkmark (4)
[11]

QUESTION 6

6.1	Kinetic energy is defined as the <u>energy an object has due to its</u> motion. $\checkmark \checkmark$	(2)
6.2	$E_p = mgh \checkmark$ = (5) (9,8) (20) \checkmark $E_p = 980 J \checkmark$	(3)
6.3	$E_{k} = \frac{1}{2} mv^{2} \checkmark$ $= \frac{1}{2}(5)(10)^{2} \checkmark$	
	= 250 J ✓	(3)
6.4	INCREASE ✓	(1)
6.5	The mass is directly proportional to the gravitation potential energy. $\checkmark \checkmark$ OR If the mass double \checkmark , the gravitational potential energy will also double. \checkmark	(2)

6 Grade 10 – Marking Guidelines

QUESTION 7

7.1	Electrical conductivity is defined as the ability of a substance/ material to conduct electricity. $\checkmark \checkmark$ (2)		
7.2	7.2.1	Copper ✓ ; aluminium ✓ ; iron	
		Accept ANY relevant answer.	(2)
	7.2.2	Sulphur ✓, Oxygen ✓, Chlorine	
		Accept ANY relevant answer.	(2)
	7.2.3	Silicon ✓, Germanium ✓ Gallium, Boron	(2)
7.3	7.3.1	 PROPERTIES OF METALS They are shiny ✓ Good conductor of heat and electricity ✓ They can bend without breaking. They are gray in colour (except for Cu and Au) They have high densities. Malleable and ductile Accept any TWO properties of metals.	(2)
	7.3.2	 PROPERTIES OF NON-METALS Dull surface ✓ Poor conduct of heat and electricity ✓ They are brittle i.e. they break when force is exerted on them. They vary in colour. They have low densities. 	(2)
		Accept any TWO properties of non-metals.	(∠) [12]

QUESTION 8

			TOTAL:	100
				[15]
8.5	<u>2</u> SO ₂ +	$O_2 \checkmark \rightarrow \underline{2}SO_3 \checkmark$		(2)
	8.4.2	MgSO₄ ✓✓		(2)
8.4	8.4.1	NaCℓ ✓ ✓		(2)
8.3	<u>Anion i</u> wherea	s a negatively charged atom or molecules $\checkmark \checkmark$, as a cation is a positively charged atoms or molecules.	$\checkmark\checkmark$	(4)
	8.2.3	Sodium nitrate ✓		(1)
	8.2.2	Hydrogen chloride ✓		(1)
8.2	8.2.1	Carbon oxide ✓		(1)
8.1	Define compo	a pure substance as <u>a single type of material</u> (elemen unds). ✓✓	ts or	(2)