

# **Education and Sport Development**

Department of Education and Sport Development Departement van Onderwys en Sport Ontwikkeling Lefapha la Thuto le Tlhabololo ya Metshameko

## **NORTH WEST PROVINCE**

**GRADE 10** 

**TECHNICAL MATHEMATICS PAPER 2** 

**HALF-YEARLY EXAMINATION 2018** 

**MARKS: 75** 

TIME: 11/2 HOURS

This question paper consists of 7 pages and 1 diagram sheet.

#### INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 6 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs et cetera that you used to determine the answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. A DIAGRAM SHEET for answering QUESTION 3.1 is given at the end of the question paper. Detach and attach it in your answer book/ sheet.
- 8. You may use an approved scientific calculator (non-programmable and non-graphical)
- 9. Write neatly and legibly

 $_{\rm 1.1}$  In the diagram below  $\Delta ABC$  is a right angled triangle.



Complete the following trigonometric ratios:

$$1.1.1 \sin \alpha = \tag{1}$$

1.1.2 
$$\sec \alpha =$$

1.2 If  $p = 62^{\circ}$  and  $q = 28^{\circ}$ , use a calculator to find the values of the following:

$$1.2.1 \quad \sin\left(p+q\right) \tag{2}$$

1.2.2 
$$5 \cot q + \frac{\sin p}{2}$$
 (2)

1.3 Solve for x, if  $0^{\circ} < x < 90^{\circ}$ , rounded to a whole number.

1.3.1 
$$3\cos x = 1.5$$
 (2)

1.3.2 
$$\tan(2x+15^\circ)=3$$
 (2)

1.4 If  $13 \cos \theta - 5 = 0$  and  $90^{\circ} \le \theta \le 360^{\circ}$ , determine the value of the following with the aid of a sketch.

1.4.1 
$$\cot \theta$$
 (4)

1.4.2 
$$\sin \theta + \cos \theta$$
 (2) [16]

2.1 Given below is triangle ABC with D as the midpoint on BC. The length of BC is 8 m and  $A\hat{C}D = 32,01^{\circ}$ .



2.1.1 Calculate the length of AB.

(3)

2.1.2 Calculate the length of AC.

(2)

2.2 In the figure below, a window washer (A) on a ladder looks at a nearby building (BD) which is 100 m away. The angle of elevation of the top of the building is  $18.7^{\circ}$  and the angle of depression of the foot of the building is  $6.5^{\circ}$ .



Determine:

2.2.1 the length of AD. (3)

2.2.2 how tall is the building. (4)

2.2.3 the area of  $\triangle ABD$ . (3)

[15]

Given:  $f(x) = 2 \tan x$  and  $g(x) = \sin x - 1$ 

- 3.1 Use the set of axes provided on the attached DIAGRAM SHEET and draw the graph of f and g in the interval  $x \in [0^\circ; 360^\circ]$ . (7)
- 3.2 Write down the range of g. (2)
- 3.3 For which values of x is g(x) = -1? for  $[0^{\circ};360^{\circ}]$ ? (2)
- 3.4 If the values of x is 162° and 318° where f(x) = g(x) what will the value(s) of x be if g(x) > f(x) for  $[90^\circ; 270^\circ]$ . (2) [13]

#### **QUESTION 4**

4.1 In the diagram below, PQ // RS,  $P\hat{A}D = 53^{\circ}$ ,  $B\hat{E}D = 104^{\circ}$  and  $C\hat{F}E = 149^{\circ}$ .  $A\hat{D}E = x$ ,  $A\hat{B}E = y$  and  $E\hat{F}K = z$ . Use the diagram below to answer the following questions. Give reasons where necessary.



- 4.1.1 Calculate the size of angle x. (2)
- 4.1.2 Calculate the size of angle y. (2)
- 4.1.3 Calculate the size of angle z. (2)

4.2 In the diagram below,  $\stackrel{\circ}{BCE} = x$ ,  $\stackrel{\circ}{ECF} = 2x$ ,  $\stackrel{\circ}{ABC} = \stackrel{\circ}{ABC} = 65^{\circ}$  and  $\stackrel{\circ}{BC} = CE$ . Use the diagram below to answer the following questions.



Calculate, stating reasons:

4.2.1 The size of 
$$BAD$$
. (2)

4.2.2 The size of 
$$x$$
. (2)

4.2.3 The size of 
$$\stackrel{\wedge}{BCF}$$
 (2)

[12]

(1)

#### **QUESTION 5**

- 5.1 State any condition for two triangles to be congruent.
- 5.2 EFGH is a quadrilateral with interior  $\hat{E} = 116$ , 67°, exterior  $\hat{G} = 243,43$ ° and EH//FG. Use the diagram below to answer the following questions.



- 5.2.1 Calculate, stating reasons the internal angle HĜF. (2)
- 5.2.2 Prove that  $\triangle HEF \equiv \triangle HFG$ . (4)
- 5.2.3 What kind of quadrilateral is EFGH? (2)

  [9]

In the diagram below DC // EB and DC = 9 units and EB = 6 units.



- 6.1 If AC = 24 units, how long is AB? (5)
- 6.2 If AE = 10 units, how long is ED? (5) [10]

**TOTAL: 75** 

#### **DIAGRAM SHEET**

## QUESTION 3.1

